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Abstract

The physical principles that have been used to develop mixed-layer
models for a surface layer of variable depth "h", are applied instead
directly to the bottom layers of-the Nested Grid Model (NGM). This elim-
inates the need to predict h explicitly and greatly simplifies the
application of these ideas. The principles are reviewed in section 2.
Generation of turbulence by shear at the top of the mixed region is
ignored in this first formulation. In section 3 the principles are
expressed as integrals with respect to the sigma coordinate of the
NGM, and the NGM history variables of potential temperature and specific
humidity are related to the "buoyancy". Section 4 spells out the details
of the numerical method as applied to the discrete sigma layers of the
model. The numerical method determines how many layers (K) participate
in the mixing for each column. It then produces a uniform (larger)
value of buoyancy in layers 1 through (K-i), and determines the appropriate
decrease in the buoyancy of the capping layer K.

Section 5 shows how the changes in buoyancy derived in section 4
can be re-converted to changes in the NGM variables of potential temperature
and specific humidity. An entrainment factor xm that describes the
mixing between layers K-1 and K is used to effect this conversion.
Section 6 describes how the mixing between layers K and K-1 could be
modified when saturation occurs in layer K-1.

Tests with the Nested Grid Model in winter of 1985-6 were made in
which only mechanical stirring was effective over land, because the
model did not contain sensible heat flux over land, nor radiation. The
stirring increased the horizontal averaged temperature in the bottom
layer of the model over land by about 1 deg/day. Changes as large as
10 deg/day were observed in regions of strong wind and stable air.

The Appendix contains test results from computations with a single
column using fixed values of surface heat flux and mechanical stirring.
The functional dependence of the mixed layer depth with time agrees with
well-known results from models that are formulated with an explicit
mixed layer depth "h".
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Turbulent mixing near the ground for the

Nested Grid Model

1. Introduction.

Turbulence near the ground is affected by wind shear, surface roughness,
and convection from the ground or ocean surface. ( Turbulence generated by
shear at the top of the mixed region will not be considered in the present
paper. ) The representation of these processes in redistributing heat
and moisture in the Nested Grid Model (NGM) will follow the physical
ideas of F. K. Ball (1960), J. Deardorff and G. Willis (1985), D. Lilly (1968),
D. Randall ( 1984) and others, but with an important practical difference.
These authors apply the physical ideas (first formulated in meteorology
by Ball) to a model in which the bottom part of the atmosphere is occupied
by a mixed layer of depth "h". Similar procedures have been used in
oceanography to model the upper mixed layer, e.g. by Krause and Turner (1967) .
This depth must be forecast explicitly, together with the velocity, temp-
erature, and moisture in the mixed layer. In the NGM, the physical
ideas will be applied directly to the existing layer structure of the
model; the explicit depth "h" will not be necessary.

2. The physical statements.

To express the physical ideas it is convenient to use the "anelastic"
representation of the atmospheric equations (Ogura and Phillips, 1962).
These are suitable for motions that are (a) slow enough that compressibility
is important only for vertical displacements, but, (b) the motions can
extend over a deep enough layer (several kilometers) that the upward
decrease of density as a measure of inertia cannot be ignored. In this
representation the motion is described as a deviation from a resting
atmosphere of uniform potential temperature, e . A subscript "a" will
designate the variable in this reference atmosphere.

: Oa = e: ( = constant), (2.1)

~a
ra = ( Pa / 100 cb)R/cp = Io [1 - (g/cp ) zJ , (2.2)

FHa = foo 1 - (g/cp, ) z ] cv/R ,(2.3)

Ta = Too - ( g/cp ) z t= ra ' (2.4)

i 0HO = Poo / R Too (2.5)f'oo = p 0 0 /RT 0 0 , (2.5)
0 \ X~~~

Too= 00Ioo .*(2.6)

poo, fo0 and T0ooare the values at the ground, and "z" measures the
height above the ground.
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The anelastic system is as follows.

The equation of motion:

A
d v / dt = - 73 P + b k + F . (2.7)

( We can ignore the Coriolis force in deriving the turbulent effects.)

The equation of continuity:

fa w / z + 2' a V = 73 fav = .0 (2.8),. :~~~~~~~~~~~~~~~~~~~28

The first law of thermodynamics:

g
d b /dt = ( ) q (2.9)

cp a a

"b" is the "buoyancy":

b = Eg (8 - ) )/ , (2.10)

F is the molecular viscous force while q is the heating rate ( e.g.
Tilojoules per ton per sec) due to molecular conduction, radiation, and
release of latent heat. "P" is a pressure-like variable, of dimensions
length2 / time2 . V is the horizontal part of the three dimensional
velocity vector, v . The explicit use of potential temperature in (2.10)
will be convenient for the NGM, where potential temperature (as opposed
to temperature) is the forecast variable.

The equation for the kinetic energy ,with K (1/2) l v 2
is derived from (2.7) and (2.8): 

~K
- ._ = - 73 a va ( K + P ) + a b w + /a v · F . (2.11)

The equation for the potential energy is derived from (2.8) and (2.9):

D( fa b z ) (g Z)fa)
\73' a v b z - ab w - q . (2.12)fasa 

(2.12).a t ~~~~~~~~(Cp ~7a~ 

The term fa b w represents the transformation from potential to kinetic
energy.

We now manipulate the equations in the usual way by using the Reynolds'
averaging convention for turbulence together with the usual boundary layer
assumption that horizontal derivatives of turbulent fluxes can be ignored.
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The first relevant equation is one for the change of the mean buoyancy:

,-~( a -b )
LSb

_ ( Oa w'b')

: _ z
(2.13)

The term LSb includes all non-turbulent terms, such as advection of the
mean buoyancy by the mean wind, and the mean heating rate q . A second

: equation is obtained from (2.12) for the mean potential energy:

? ( -?a b.z )
>) t

~LS 9(fa z w'b' )
LSp + -p I Iz - fa b'w' ,

where LSp includes all non-turbulent terms.

It will also be necessary to consider the
kinetic energy K' : 

K'

equation for the turbulent

=- (1/2) fa (2.15)

It is

+ a v'o F'

(2.16)

) ( pa w'(P'+K') )

: z

+ · +

-W C)z

(a w'b'

is the turbulent

below level z.

E = -f a w'V'

stress exerted by the air above level z on the air

We now integrate each of the three equations from z = S to z =
L , where E is a very small distance close to the "ground", and L
is a fixed height above the turbulence, such that all turbulent fluxes
can ( or will! ) be ignored at L. ( We can also ignore from now on the two
large-scale terms since they will be forecast by the non-turbulent part
of the model.)

L

9 f ag dz
Lit

L

--- fa b z dz

t J

$

- a w'b'I
f Z= So

- fa & w'b'I
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- ita b'w' dz ,

(2.14)

in which

(2.17)

(2.18)

(2.19)



f a w'(P'+K') I

L
I TV

A-0
+ a d

6z

L

+ {a v', F' dz

L

z + I fa bw' dz
z0I

(2.20)

In (2.18) the rhs cannot be set equal to zero because while w' will
tend to zero at the (level?) ground, b' will tend to increase because of the
local hot spots associated with convection. The limit as goes to
zero is that w'b' is the upward turbulent flux of buoyancy from the

surface, denoted by B :

Z~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
; a w'b' (at z = ) = B .(2.21)

( B will be proportional to a linear combination of the heat flux H and
the evaporation E, as discussed later in section 3.)

Our first physical statement about the effect of turbulence is the
following integral:

i ? jf a bc1z =d B (2.22)

( The integral extends from the ground to above the mixed region. )

To arrive at the second physical statement it is necessary to consider
both (2.19) and (2.20):

In (2.20) we assume that

(a) the left side is close to zero--i.e. that there is an appro- (2.23)
ximate balance between the terms on the right side, and

(b) the term w'(P'+K') is negligible at the ground. (2.24)

In (2.19) we assume that

(c) the appearance of S as a factor multiplying w'b' at (2.25)
z = S allows us to set that term equal to zero.
(Compare with (2.18), which had no & multiplying it. )
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At this point we are left with a simple equation for the rate of
change of the mean potential energy;

- j'a b'w' dz , (2.26)t ' f :dzXa t : is/O b z dz

and a balance between three turbulent energy processes:

0 = vPa v
a 4 : 44

(I)

dz

(II)

dz + (a b'w' dz . (2.27)

(III)

The three integrals have the following meaning.

(I) Viscous dissipation. This term is always negative.

(II) A change due to the turbulent Reynolds stress. This is normally
positive in the boundary layer.

(III) A change due to upward flux of buoyancy. Its sign requires
some discussion.

Consider first the "convective" case where heating( i.e. B) dominates
and there is little mean wind. (III) must be positive since (I) is negative.
Measurements by Deardorff and Willis (1985; see their figure 2 ) in labora-
tory convection experiments show considerable regularity in that the vertical
integral of b'w' is proportional to B. In our notation the proportionality
measured by them may be expressed as

( f a btw' dz ) = 0.4 h B , (2.28)
whr h iteehoCONV 

where h0 is the depth of the mixed layer.

We now consider the shear term, (II).
conditions of strong wind ( ignoring B ) ,
balance all of (II) by itself. This would
anced by a negative value of (III):

(ffa b'w' dz )
SHEAR

Ball (1960) postulated that under
it was not likely that (I) could
require that part of (II) be bal-

= - constant x ----- dz
1o d z

(2.29)

where the constant is positive and less than one. Kato and Phillips (1969)
performed laboratory experiments in which stably stratified water was agitated
mechanically at the top. They concluded ( in our notation ) that
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(j'fa b'w' dz ) - 1.25 fO u*3 (2.30)
SHEAR'

where u* is the "friction velocity" :

0 Ou2 =IVI 0 .2 A(2.31)

fo u. 2 = 4,~ z= 0

Denman and Miyake (1973) found that (2.30) gave reasonably accurate results
when applied to the changes in the upper mixed layer of the ocean at ship
PAPA, as induced by wind stirring. In terms of (2.26), this mixing leads
to an increase in the potential energy-- a lifting of the center of mass--
by the mechanical stirring. Dreidonks (1981) performed calculations with
a mixing model based on the above physical principles ( but using an explicit
mixed depth "h") to interpret turbulent field observations in Holland.
He quotes the larger value of 2.5 derived by Kantha et al. (1977) as giving
satisfactory results in his calculations. The latter value will be used
therefore in the NGM instead of the Kato-Phillips value of 1.25 .

Our second equation is obtained by using both (2.28) and (2.30) to
express the term on the right side of (2.26):

--fa b z dz = -0.4 h B + 2.5 go u* (2.32)

One remark can already be made about the relative importance of
the buoyancy flux B and.the mechanical stirring. The depth over which
b will be changing is "h" . The stress term in (2.32), however, is
not proportional to h, whereas the other two terms in that equation are.
We therefore can expect that the mechanical stirring will be most
important only for small depths of the mixed layer, and to lose its
importance as h increases. ( Ball, in fact, considered the 3-km deep
mixed layer occurring over the interior of Australia in the daytime.
This value of h was large enough to lead him to ignore mechanical mixing
in favor of that from convection. Wind stirring can however be expected
to be more important in winter when B will be small over land and strong
winds can produce a large u*. )

The factor 0.4 in the results of Deardorff and Willis is less than 0.5.
This is because there are negative values of b'w' around the top of the
mixed region. This represents the entrainment of lighter fluid from
the quiescent region above the mixed layer into the turbulent mixed
layer.
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3. Relation between fluxes of buoyancy, heat, and moisture, and the NGM
"history variables".

Before specifying how (2.22) and (2.32) will be used in the NGM, it is
necessary to correct the buoyancy formula for the effect of virtual temperature.
The normal definition of virtual potential temperature is to multiply 9
with the factor (1 + 0.609q ), where q is the specific humidity. This
is a non-linear relation. The mixing process will determine changes in
buoyancy, not e or q . The former changes must, at the end, be con-
verted into changes of ~ and q . A linear relation for virtual potent-
ial temperature will simplify this conversion. To obtain this, we first
note that in the mixed region for any one column, the variations of 80 and
q will be small. We therefore write

;v0 = ( 1 + 0.609 q1 ) e + (0.609 a ) q (3.1)

where O1 and ql are the values in the bottom layer of the model at each
column. We consider this as in effect redefining the reference atmosphere
on a local basis, so that G1 and ql in (3.1) can be considered as con-

stants within each column.

The buoyancy flux B is then given by

-B = ,ow'b' = ? ( g /b) w'ev'

;5= (g/6 ) 0(1+.609q,) w'e' + (0.609 91) , w'q'] (3.2)

= (g /4 ) [ ( (1+.609ql)/ lcp ) HF + (0.609 O1) EV]

where

HF = heat flux from the surface ( kilojoules per square meter
per second )

and (3.3)

EV = evaporation rate from the surface ( tons of water per square
meter per second )

The NGM has a sigma coordinate system in which sigma increases from
zero at the earth's surface to one at zero pressure:

~O = .( Ps - P ) / Ps , (3.4)

where Ps is the surface pressure. ( The turbulence will not change ps. )
The "history" variables for temperature and specific humidity in the NGM
are the products ps e and ps q . ( In the NGM code, ps is stored in
units of 100 cbs. The final statement in section 4 will describe how
this convention for ps can be easily accomodated . )
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We now introduce several minor approximations into the integrals
appearing in (2.22) and (2.32). These approximations will simplify
greatly the arithmetic in CYBER vector operations, with little effect on
the end result. Firstly we. set

fa dz = dz= - dp / g = + Ps do- / g .(3.5)

Secondly, we first replace z in (2.32) by z in the reference atmo-
sphere,

z = ( Cp ) / g ) ( 1 -- ra / Too ), (3.6)
and then replace T-a by i] from the NGM definition:

z = ( cp / g ) ( 1 - T/ r-oo ). (3.7)
:

The advantage of this will become apparent later. (This definition of z
is of course not accurate enough to be used in computing the horizontal
pressure force in the NGM forecast equations. But the purpose of z in
(2.32) is to assign weights to the buoyancy tendency, as a function of
elevation, that are different from those in (2.22), and (3.7) is more than
adequate for this purpose.) The function 7r in the NGM is given by:

' = ( p / 10Ocb ) = ( ps/10Ocb) (1 -) ,

X W0 0 (1- o-)~~~~(3.8)
T=oo ( 1 - o-r)

where =) R / cp .

Thirdly, we recognize that the virtual temperature effects imply
that the buoyancy "b" must be defined as

b = g ( 9V - ) / ,(3.9)

where &v is the virtual temperature in the NGM as defined by (3.1). The
second term, being constant, can be ignored. Equations (2.22) and
(2.32) can now be written as

J P( Ps v ) /t d = e B , (3.10)

and

J( I( - /TIoo ) ( Ps e) /t dO = (g/cp) (0.4 h B - 2.5 fs u*3 )

(3.11)
The last of these may be combined with (3.10) and (3.8) to give

{(1 -6) G (p5s ev)/2t do =

(3.12)
( if - 0.4 g h / c ) B + ( 2.5 g / c ) u3

P P
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The time integration procedure in the NGM involves a preliminary
step from t to t + (1/2) dt , followed by a full time step from t
to t + dt. All friction and turbulence terms are applied only in the
full time step; this will also be true for for the present form of
vertical mixing.

We should also recognize now that the goal of this process is to
determine the changes in ps 9 and the changes in ps q ; changes in
buoyancy ( i.e. Ps ev ) are only an intermediate step. It will be
convenient to use the following notation for these variables.

= Ps eV; f - : d ~= Ps q ,

~= Ps 8v '

From (3.1), we have that

+ (0.609 01 ) ' .

In one time step the turbulence will produce
and -. for a column.

d = g d r -g dt &dz =
~t

= (g dt / s Cp ) HF

J ::dr g g dAt 9 q dz -

(g dt) EV

(3.16)

the following changes in

g dt rs ( w'e')s

(3.17)
-= H* .

g dt fs ( w-T-) s
(3.18)

For symmetry we also define a comparable quantity for the surface stress term.

A= dt ( Ifsu* 3 ) (3.19)

HF, EV, and a( 1 .* 3 ) will form the input of forcing terms for the mixing
computations. The starred forms above are presented here only for notational
convenience.
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4. Efficient solution of the mixing equations.

Equations (3.10) and (3.12) will be applied to each column of grid points
in the NGM by expressing the sigma integrals as a sum over the bottom
sigma layers of the model. The layers involved are determined by the
following definition.

The mixing region will consist of layers k = 1,2,3,--,K, where

layer K is the first layer (at time t ) such that v ( or (3) ex-

ceeds the value of 9v ( or t ) in the mixed layers beneath it.

The integrals will therefore be replaced by sums over layers 1 through K .
(A more precise definition of when ef K exceeds ( in the layers underneath
it will be given in (4.31) near the end of this section. )

As stated in this way, there would be K values of 3 (t+dt) to be
solved for, from only two equations. This indeterminacy for K greater
than 2 ) is however only an apparent one because we view the mixing
process in this time step as resulting in a uniform value of 9 (t+dt)
in the layers k = 1,2,--,(K-1), and a new value of 9 in layer K .
Thus there are really only two unknowns.

Let d K and S7 m denote the changes in the buoyancy for
layer K and the layers 1 through (K-i) .

(t~~~~~at) ~~~~~4.1)~ K OK= K(t+dt) K(t) 
(4.1)

-PSm = (m(t+dt) - jm(t) (4.2)

When K is greater than 20 ,, m(t) will be defined as the following
average value:

K-1

(?m t AJ'k ( k(t) / SK (4.3)

k=l1

where SK is the value of sigma at the base of layer K:

K-1

SK = O Ak (4.4)

k=1

The finite sum counterpart of the integral statement (3.10) is now

SK ~:m + K O K K =(4 .5)
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where X is given by

X = (1 + 0.609 ql ) H* + (0.609 1 ) E* . (4.6)

To express the counterpart of (3.12) it is convenient first to introduce
the notation

r = ( 1 - ~r ) . (4.7)

The counterpart of (3.12) becomes

RK gem + 4ArK rK 3K = Y · (4.8)

RK is equal to
K-1

RK = ŽA k rk (4.9)

k=l
and Y is

0.4 gh 2.5 g
Y = ( 1 … ---- ) X + ( …---) W* . (4.10)

cp @ cp

At this point we must define the Deardorff-Willis length "h". We
will take it as equal to the vertical extent of layers 1 through K-1.
A value for this that is consistent with (3.7) is

ghi:--= ( 1 - r*K ) , (4.11)
cp:

where
where r*K = ( 1 - SK ) (4.12)

-(,Note that this last step has removed all reference to , the potential
temperature of the reference atmosphere. ) This yields a moderately simple
simple expression for Y:

2.5 g
Y = C ( 1 - 0.4) + 0.4 r*K ] X + W* .- (4.13)

cp

The solutions of (4.4) and (4.7) are

RK X SKY
= , (4.14)

A OK ( RK - rK SK )
and

'm. - rKX + Y
-RK~ .~ r SK(4.15)

RK - rK SK
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It is however worthwhile to expand these expressions for greater clarity.

First we define a mean value of r by the ratio

rK = RK / SK

= ' rk4AOk / SOSk . (4.16)

r decreases slowly with increasing sigma ( or K ), from a value of one at
sigma = 0 to about 0.9 at sigma = 0.5 . However it satisfies the inequality

rK < rK 1 . (4.17)

The denominators of (4.14) and (4.15) are therefore positive.

We now introduce the expression (4.13) for Y, and arrive at the following
expressions for the changes in the buoyancy of layer K and the uniform
buoyancy of the K-1 layers underneath layer K .

.AoK (rK rK) i: K =
(4.18)

0 r _ : fu; n 0 ~~~~ ~~2.5 g 
( (1- rK) -0.4(1- r*K ) X ( ) W* ,

cp

and r~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
K ( rK - rK ) m

-KK-r 0m =(4.19)

;: 20.5 g
I( - rK) - 0.4 (1 - r*K ) X + ( W* .

cpCp

The right sides of these two equations differ in only two regards: the
outermost signs are different, and (4.18) uses rK while (4.19) uses
rK. The square brackets multiplying X can be converted into the foll-
owing expression by inserting the adiabatic "z" that is defined in (3.7).

g: = ( z' -0.4 z* ) . (4.20)
cp :

z* is "z" at the top of layer K-1 . For (4.19), z' is "z" in the
middle of layer K . The square bracket is therefore positive in (4.19).
For (4.18), z' is equal to

K-1] K-1

z (4.18) = Zk k (4.20)Ii kk / Ao-k . ~~~~(4.20)
k=l k=l

This is the mean "z" of layers 1 through K-1. This in turn is equal
(approximately) to 0.5 z* . The square bracket will be positive also
for (4.18) -- although smaller than that in (4.19). This arrangement of
signs for the buoyancy changes is as it should be, with negative changes
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in the layer just above the completely mixed layers and positive changes
in the completely mixed layers underneath.

A precise definition of the determination of layer K -- i.e., the
first layer above :the completely mixed region--- is now possible. To do
this, we note that (4.18)-(4.19) can be rewritten as

C SK = - AAK (FX - BBK X ) , (4.21)
and

m $ = + CCK ( FX - DDK X ) ,(4.22)

FX has been defined as the following combination ( independent of K):

FX = ( 1 - 0.4 )X + ( 2.5 g / cp ) W* , (4.23)

and the following positive functions of K have been defined.

AAK = -1 /( ( r-K -rK ) ) , (4.24)

BBK = (rK - 0.4 r*K) , (4.25)

CCK = 1 / I SK ( rK - rK ) ] , (4.26)

DDK = ( rK - 0.4 r*K ) . (4.27)

In order to suppress small irregularities in ( we define, for each
layer K , a mean value of for the layers underneath it at time t

(30 f 4-m 0 =; t tt / k / SK . 0 ; (4.28)

k=1

Equations (4.21) and (4.22) then predict, for any layer that is under
consideration as possibly being the correct layer K, that

(~K- em ) ; ((K- 3m )
t+dt t

- ( AA + CC)K FX - ( AA BB + CC DD )K X

- (=K (Cm) - EX m (4.29)
t

where EK is positive.

The mixing should involve enough layers that the left side of (4.29) is
not negative. The criterion for determining layer K is therefore that it
is the first layer that satisfies the criterion

( :K - m ) >t EK (4.30)
t -
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As noted earlier, the NGM code expresses Ps in units of 100 cbs
rather than the centibars implied in the equations of this Office Note.
Allowance for this is made by simply dividing the time increment dt
by 100 when multiplying the input variables HF, EV, and u*3 . This
converts By into the proper NGM units for Ps9v, and will also take
care of the mass exchange xm and Ps8 and cpsq that are derived
in the next section.

5. Changes in potential temperature and specific humidity.

We turn now to the question of constructing the changes in the NGM
"history variables", namely potential temperature ( actually i = Ps 9 )
and specific humidity ( actually i = Ps q ) . We picture the change
S(3 K in ( of the top Iayer to have been brought about by an interchange
of xm units of mass between the top layer and the layers underneath
it. That is to say--

O K = mass added times m(t) -

= xm times ( am(t) -

mass lost times 3 K(t)

Q K(t) ) ·

( The mass added is equal to the mass lost . ) This defines xm as

xm = m(t) 2 K(t)
{3 M(t) :- I{e K(t)

The denominator is negative, and the mixing equations, as discussed at
the end of the last section, will produce a negative numerator.
(4.30) insures also that xm does not exceed one.

We now picture the same process with respect to
xm from (5.2), we first solve for i K at t+dt.

t= Ps 9 .

OK (t+dt) = ( 1 - xm ) a K(t) + xm a m(t) ,

m(t) =

K-1

X AOk A <k(t) / SK

k= 1

The criterion

Knowing

(5.3)

(5.4)

(3.17) states the conservation of heat. It can be written as

SK a m(t+dt) + 4 K i K(t+dt)

This can now be solved for o(m(t+dt).

= Ps q ) we can follow the same procedure.
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In conclusion, some consideration is necessary for the case where the
flux of buoyancy at the surface is directed downward ( as would occur
when the near-surface temperature is warmer than the underlying surface ).
In the case of negative H* , for example , the appropriate procedure
would seem to be to first subtract from pse in layer 1 the amount implied
by the downward flux of heat, and then to apply the mixing process described
in this note but with H* set equal to zero. Similar reasoning would
apply to a downward flux of moisture at the ground ( negative E* )J.

Tests were-made with this surface mixing method in the winter of 1985-6.
At this time, the NGM did not contain radiation, so that neither sensible
flux nor evaporation were computed over land. Only the mechanical stirring
was effective over land, therefore. The tests showed that an average warming
of about one degree per day in the bottom layer (over land) was caused
by the stirring. Changes as large as +10 degrees per day were obtained upon
occasion in regions of strong wind with very cold bottom-layer temperatures.

6. Saturation at the top of the mixed layers.

The mixing process described above can lead to saturation in the top
layer (K-1) of the mixed layers, especially in cold air that moves out over
warm water. In one experimental forecast containing an outbreak of cold
air over the Gulf of Mexico, a shallow (K=2) mixed layer characterized the
initial cold air over the southeastern United States. When this air moved
out over the Gulf, the mixed layers rapidly extended up to include layer
3. This occurred in the presence of strong subsidence. This subsidence
evidently acted to prevent the mixed layer from extending up higher,
by producing relatively warm air in layer 4, with a pronounced inversion.
The strong evaporation then produced saturation in layer 3, while the
relative humidity in layer 4 was less than 10%. The saturation in layer 3
was realistic in that satellite pictures showed overcast stratocumulus in
the cold air. However, the model forecast precipitation in all of the
cold air over the Gulf---more than suggested by the few ship observations.

The computations described in the preceding sections allow for the
buoyant effect of moisture through its effect on the virtual potential
temperature, but they ignore the effect of the release of latent heat in
saturated air. When the air in layer K-1 ( the top of the mixed layers)
is saturated, air parcels from that layer that participate in the mixing
process with layer K, will move upward along a moist adiabat instead of
along a dry adiabat. They will therefore arrive in layer K with a larger
buoyancy than if they were unsaturated. Thus, the buoyancy ( K of the
capping layer K will not be as great relative to the mixed layers under-
neath.

A crude estimate of the reduced relative buoyancy of layer K can be
obtained by the calculation

K (adjusted) = (K (original) - ps ; , (6.1)

where & is the change in e of a parcel lifted along the moist adiabat
from layer K-1 to layer K. This is given by the expression

S = ( PK- PK-1 ) x ( d- / dp )m adiab · (6.2)
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A sufficiently accurate expression for dO / dp is

:: amp : - : e ~~~q~j( 1 - 2t ) :q~~~~
( dO / dp )madiab = (6.3)

p ( q + C\ )

where

and-~~ 0 = cp T / e L , (6.4)
and.

X= R(dry air) / R(vapor). (6.5)

The effect of this on the the mixing factor xm defined in (5.2) is
to replace PK(t) in the denominator by the adjusted value from (6.1):

:; ::0 f E ( ASK ) 00 0
xm(adj) = (6.6)

^K(t;adi) - am(t)

This will increase xm from the unsaturated value, and increase the turbulent
flux of moisture upwards into layer K, with a corresponding reduction in
the moisture remaining in the mixed layers k=1,2,--(K-1). The increase in
xm will also increase the warming of the mixed layers. Both of these
changes will reduce the saturation originally present in layer K-1.

The adjustment to K(t) could make the denominator of (6.6) small
tenough that layer K no longer satisfies condition (4.30). Some experi-
mentation will probably be needed to see if it is necessary then to proceed
to the next layer for K, or whether a cheaper expedient is possible.

Acknowledgments. My first ideas on this method of formulating the surface
mixing process for the NGM ignored the buoyancy integral in the equation
for turbulent kinetic energy when the surface buoyancy flux was positive.
(In other words, I had ignored the experimental measurements by Deardorff
and Willis!) Dr. Douglas Lilly drew my attention to this important
omission. Dr. Paul Long helped considerably in the early formulation
stages and in drawing my attention to the thesis by A. Driedonks.
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APPENDIX

Test solutions of (4.18)-(4.19), together with (5.3)-(5.5), have been
made for a single column. The forcing values were constant in time. The
surface heat flux ( HF ) was either zero, or had the value

HF = fs x Cd x velocity x cp x temperature difference

= (1.125 10- 3 )x (2.0 10-3 ) x (5 m/sec) x 1005 x (2 degrees)

= 0.02261 kjoules per square meter per second.

( Cd is a drag coefficient.) The mechanical stirring (W) was also either
zero, or had the value

s u * 3 = s ( Cdl/2 velocity )3

= fs ( (2.0 10-3 )1/2 x 10 m/sec )3

= 0.0001 tons per second

Evaporation was set equal to zero in all cases.

The delta sigma values were based on a uniform layer depth of about
300 meters, similar to that in the bottom layers of the NGM. The surface

pressure was 1013.25 mbs at a height of zero meters above sea-level.
Pressures in the middle of the layers were 995.4, 960.6, 927.1, 894.7,
863.4,--- millibars. Specific humidity values of 9.82, 9.48, 9.15, 8.83,
8.52,--- grams per kilogram were assigned to the layers. Two distributions
of potential temperature were treated, corresponding respectively to temperature
lapse rates of -6.5 and +20.0 degrees per kilometer, each with a temperature
of 288K at sea level. A time step (dt) of 10 minutes was used, and calcu-

lations were continued in each case until layers 1 through 4 were uniformly
mixed. The accompanying tables show the values of 1s 1 at the moments
when each successive layer became completely mixed.

The time required to mix a given number of layers is larger with the more
stable lapse rate. The non-zero values of HF and W were chosen fortuitously so
that approximately the same time is required by HF and by W to mix layer two
with layer one. However, from then on the stirring case ( HF = 0 ) falls
behind the heating case ( W = 0 ). This is in accord with the statements made
near the end of section 2.

The growth of the number of completely mixed layers with time is simple
in these cases. Each table contains a value of the time required to mix
a certain layer, divided by the time to mix layer two with layer one, and
then raised to the power 1/2 for the heating case and 1/3 for the stirring
case. The linear growth of these numbers verifies that these calculations
reproduce the well-known results deduced from the conventional model with an
explicit value of "h".

The values of xm , the mass exchange variable, varied in these
calculations from a minimum of 0.0005 upon starting a new layer to a
maximum of 0.08 at the end of layer 4 in the -6.5 deg/km case.
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